Адаптивная оптика: как рассмотреть звёзды на небе? Адаптивная оптика - история лазера Отрывок, характеризующий Адаптивная оптика.

Содержание статьи

АДАПТИВНАЯ ОПТИКА, в астрономии – автоматическая оптико-механическая система, предназначенная для исправления в реальном времени атмосферных искажений изображения, которое дает телескоп. Системы адаптивной оптики применяются в оптических и инфракрасных телескопах наземного базирования для повышения четкости изображения. Они необходимы также для работы астрономических интерферометров, используемых для измерения размеров звезд и поиска их близких спутников, особенно планет. Системы адаптивной оптики имеют и неастрономические приложения: например, когда требуется наблюдать форму искусственных спутников Земли с целью их опознания. Разработка систем адаптивной оптики началась в 1970-е годы и приобрела особый размах в 1980-е в связи с программой «звездных войн», включавшей разработку лазерного противоспутникового оружия наземного базирования. Первые штатные системы активной оптики начали работать на крупных астрономических телескопах около 2000 года.

Атмосферные помехи.

Идущие от космических источников лучи света, проходя сквозь неоднородную атмосферу Земли, испытывают сильные искажения. Например, волновой фронт света, приходящего от далекой звезды (которую можно считать бесконечно удаленной точкой), на внешней границе атмосферы имеет идеально плоскую форму. Но пройдя сквозь турбулентную воздушную оболочку и достигнув поверхности Земли, плоский волновой фронт теряет свою форму и становится похож на волнующуюся морскую поверхность. Это приводит к тому, что изображение звезды превращается из «точки» в непрерывно дрожащую и бурлящую кляксу. При наблюдении невооруженным глазом мы воспринимаем это как быстрое мигание и дрожание звезд. При наблюдении в телескоп вместо «точечной» звезды мы видим дрожащее и переливающееся пятно; изображения близких друг к другу звезд сливаются и становятся неразличимы по отдельности; протяженные объекты – Луна и Солнце, планеты, туманности и галактики – теряют резкость, у них пропадают мелкие детали.

Обычно на фотографиях, полученных телескопами, угловой размер мельчайших деталей составляет 2–3І ; на лучших обсерваториях он изредка составляет 0,5І . Следует иметь в виду, что при отсутствии атмосферных искажений телескоп с объективом диаметром в 1 м дает угловое разрешение около 0,1І , а с объективом в 5 м дает разрешение в 0,02І . Фактически такое высокое качество изображения у обычных наземных телескопов никогда не реализуется из-за влияния атмосферы.

Пассивный метод борьбы с атмосферными искажениями заключается в том, что обсерватории строят на вершинах гор, обычно на высоте 2–3 км, выбирая при этом места с наиболее прозрачной и спокойной атмосферой (см . АСТРОКЛИМАТ). Но строить обсерватории и работать на высоте более 4,5 км практически невозможно. Поэтому даже на самых лучших высокогорных обсерваториях большая часть атмосферы располагается все же выше телескопа и существенно портит изображения.

Роль астронома-наблюдателя.

Вообще говоря, задачу «получить изображение лучше, чем дает атмосфера», в астрономии решают разными средствами. Исторически, в эпоху визуальных наблюдений в телескоп, астрономы научились внимательно ловить моменты хорошего изображения. В силу случайного характера атмосферных искажений в некоторые мгновения они становятся незначительными, и в изображении проявляются мелкие детали. Наиболее опытные и настойчивые наблюдатели часами караулили эти моменты и смогли таким образом зарисовать очень тонкие детали поверхности Луны и планет, а также обнаружить и измерить очень тесные двойные звезды. Но крайняя необъективность этого метода ярко проявилась в истории с марсианскими каналами: одни наблюдатели их видели, другие – нет.

Применение в астрономии фотопластинок позволило выявить множество новых объектов, недоступных глазу из-за их низкой яркости. Однако фотоэмульсия при слабой освещенности имеет очень малую чувствительность к свету, поэтому в начале 20 в. при астрономическом фотографировании требовались многочасовые экспозиции. За это время атмосферное дрожание заметно снижает качество изображения по сравнению визуальным.

Некоторые астрономы пытались бороться с этим явлением, самостоятельно исполняя роль активной и отчасти адаптивной оптических систем. Так, американские астрономы Дж.Э.Килер (Keeler J.E., 1857–1900) и В.Бааде (Baade W., 1893–1960) регулировали во время экспозиции фокус телескопа, наблюдая с очень большим увеличением (около 3000 раз) форму комы звезды на краю поля зрения. А известный конструктор телескопов Дж.У.Ричи (Ritchey G.W., 1864–1945) разработал особую фотокассету на подвижной платформе – так называемую «кассету Ричи»; с ее помощью можно быстро выводить фотопластинку из фокуса телескопа, заменяя ее фокусировочным прибором (нож Фуко), а затем возвращать кассету точно в прежнее положение. Во время экспозиции Ричи несколько раз отодвигал кассету, когда чувствовал, что нужно поправить фокус. К тому же, наблюдая за качеством изображения и его положением в окуляр, размещенный рядом с кассетой, Ричи постоянно поправлял положение кассеты и научился быстро закрывать затвор, когда изображения становились плохими. Эта работа требовала от астронома очень высокого напряжения, но зато сам Ричи получил таким способом великолепные фотографии спиральных галактик, на которых впервые стали видны отдельные звезды; эти прекрасные снимки воспроизводились во всех учебниках 20 в. Однако широкого применения кассета Ричи не получила ввиду большой сложности работы с ней.

Развитие фото- и видеотехники позволило быстро фиксировать изображение объекта в режиме киносъемки с последующим отбором наиболее удачных изображений. Были разработаны и более тонкие методы апостериорного анализа изображений, например, методы спекл-интерферометрии, позволяющие выявлять в размытом атмосферой пятне расположение и яркость объектов с заранее известными свойствами, таких как «точечные» звезды. Математические методы восстановления изображений также позволяют повышать контраст и выявлять мелкие детали. Но указанные методы неприменимы в процессе наблюдения.

Принципы адаптивной оптики.

Запуск на орбиту в 1990 оптического телескопа «Хаббл» диаметром 2,4 м и его чрезвычайно эффективная работа в последующие годы доказали большие возможности телескопов, не обремененных атмосферными искажениями. Но высокая стоимость создания и эксплуатации Космического телескопа заставили астрономов искать пути компенсации атмосферных помех у поверхности Земли. Появление быстродействующих компьютеров и, не в последнюю очередь, желание военных создать систему космического оружия с лазерами наземного базирования сделали актуальной работу по компенсации атмосферных искажений изображения в реальном времени. Система адаптивной оптики позволяет выравнивать и стабилизировать волновой фронт прошедшего сквозь атмосферу излучения, дает возможность не только получать в фокусе телескопа четкое изображение космического объекта, но и выводить с Земли в космос остро сфокусированный луч лазера. К счастью, военные устройства такого типа не были реализованы, но проделанная в этом направлении работа чрезвычайно помогла астрономам почти полностью реализовать теоретические параметры крупных телескопов по качеству изображения. К тому же разработка активной оптики сделала возможным строительство наземных оптических интерферометров на базе телескопов большого диаметра: поскольку после прохождения через атмосферу длина когерентности света составляет всего около 10 см, наземный интерферометр без системы адаптивной оптики работать не может.

Задача адаптивной оптики состоит в нейтрализации в реальном времени искажений, вносимых атмосферой в изображение космического объекта. Обычно адаптивная система работает совместно с системой активной оптики, поддерживающей конструкцию и оптические элементы телескопа в «идеальном» состоянии. Действуя совместно, системы активной и адаптивной оптики приближают качество изображения к предельно высокому, определяемому принципиальными физическими эффектами (в основном – дифракцией света на объективе телескопа).

В принципе системы активной и адаптивной оптики подобны друг другу. Обе они содержат три основных элемента: 1) анализатор изображения, 2) компьютер с программой, вырабатывающей сигналы коррекции и 3) исполняющие механизмы, изменяющие оптическую систему телескопа так, чтобы изображение стало «идеальным». Количественное различие между этими системами состоит в том, что коррекцию недостатков самого телескопа (активная оптика) можно проводить сравнительно редко – с интервалом от нескольких секунд до 1 минуты; но исправлять помехи, вносимые атмосферой (адаптивная оптика), необходимо значительно чаще – от нескольких десятков до тысячи раз в секунду. Поэтому система адаптивной оптики не может изменять форму массивного главного зеркала телескопа и вынуждена управлять формой специального дополнительного «легкого и мягкого» зеркала, установленного у выходного зрачка телескопа.

Реализация адаптивной оптики.

Впервые на возможность коррекции атмосферных искажений изображения при помощи деформируемого зеркала указал в 1953 американский астроном Хорас Бэбкок (Babcock H.W., р. 1912). Для компенсации искажений он предложил использовать отражение света от масляной пленки, поверхность которой деформирована электростатическими силами. Тонкопленочные зеркала с электростатическим управлением разрабатываются для аналогичных целей и в наши дни, хотя более популярным исполнительным механизмом служат пьезоэлементы с зеркальной поверхностью.

Плоский фронт световой волны, пройдя сквозь атмосферу, искажается и вблизи телескопа имеет довольно сложную структуру. Для характеристики искажения обычно используют параметр r 0 – радиус когерентности волнового фронта, определяемый как расстояние, на котором среднеквадратическая разность фаз достигает 0,4 длины волны. В видимом диапазоне, на волне длиной 500 нм, в подавляющем большинстве случаев r 0 лежит в интервале от 2 до 20 см; условия, когда r 0 = 10 см, нередко считаются типичными. Угловое разрешение крупного наземного телескопа, работающего через турбулентную атмосферу с длинной экспозицией, равно разрешению идеального телескопа диаметром r 0 , работающего вне атмосферы. Поскольку значение r 0 возрастает приблизительно пропорционально длине волны излучения (r 0 µ l 6/5), атмосферные искажения в инфракрасном диапазоне существенно меньше, чем в видимом.

Для небольших наземных телескопов, диаметр которых сравним с r 0 , можно считать, что в пределах объектива волновой фронт плоский и в каждый момент времени наклонен случайным образом на некоторый угол. Наклон фронта соответствует смещению изображения в фокальной плоскости или, как говорят астрономы, дрожанию (в физике атмосферы принят термин «флуктуации угла прихода»). Для компенсации дрожания в таких телескопах достаточно ввести плоское управляемое зеркало, наклоняющееся по двум взаимно перпендикулярным осям. Опыт показывает, что такое простейшее исполнительное устройство в системе адаптивной оптики малого телескопа весьма существенно повышает качество изображения при длительных экспозициях.

У телескопов большого диаметра (D) на площади объектива укладывается порядка (D/r 0) 2 квазиплоских элементов волнового фронта. Этим числом и определяется сложность конструкции компенсирующего зеркала, т.е. количество пьезоэлементов, которые, сжимаясь и расширяясь под действием управляющих сигналов с высокой частотой (до сотен герц), изменяют форму «мягкого» зеркала. Нетрудно оценить, что на крупном телескопе (D = 8–10 м) полное исправление формы волнового фронта в оптическом диапазоне потребует корректирующего зеркала с (10 м / 10 см) 2 = 10 000 управляемыми элементами. При нынешнем развитии систем адаптивной оптики это практически невыполнимо. Однако в близком инфракрасном диапазоне, где значение r 0 = 1 м, корректирующее зеркало должно содержать около 100 элементов, что вполне достижимо. Например, система адаптивной оптики интерферометра Очень большого телескопа (VLT) Европейской южной обсерватории в Чили имеет корректирующее зеркало из 60-ти управляемых элементов.

Для выработки сигналов, управляющих формой корректирующего зеркала, обычно анализируется мгновенное изображение яркой одиночной звезды. В качестве приемника используется анализатор волнового фронта, размещенный у выходного зрачка телескопа. Через матрицу из множества небольших линз свет звезды попадает на ПЗС-матрицу, сигналы которой оцифровываются и анализируются компьютером. Управляющая программа, изменяя форму корректирующего зеркала, добивается того, чтобы изображение звезды имело идеально «точечный» вид.

Эксперименты с системами адаптивной оптики начались в конце 1980-х, а к середине 1990-х уже были получены весьма обнадеживающие результаты. С 2000 практически на всех крупных телескопах используются такие системы, позволяющие довести угловую разрешающую способность телескопа до его физического (дифракционного) предела. В конце ноября 2001 система адаптивной оптики начала работать на 8,2-метровом телескопе Йепун (Yepun), входящем в состав Очень большого телескопа (VLT) Европейской южной обсерватории в Чили. Это существенно улучшило качество наблюдаемой картины: теперь угловой диаметр изображений звезд составляет 0,07І в диапазоне K (2,2 мкм) и 0,04І в диапазоне J (1,2 мкм).

Искусственная звезда.

Для быстрого анализа изображения в системе адаптивной оптики используется опорная звезда, которая должна быть весьма яркой, поскольку ее свет делится анализатором волнового фронта на сотни каналов и в каждом из них регистрируется с частотой около 1 кГц. К тому же яркая опорная звезда должна располагаться на небе вблизи изучаемого объекта. Однако в поле зрения телескопа далеко не всегда встречаются подходящие звезды: ярких звезд на небе не так много, поэтому до недавних пор системам адаптивной оптики были доступны наблюдения лишь 1% небосвода. Чтобы снять это ограничение, было предложено использовать «искусственный маячок», который располагался бы вблизи изучаемого объекта и помогал зондировать атмосферу. Эксперименты показали, что для работы активной оптики очень удобно при помощи специального лазера создавать в верхних слоях атмосферы «искусственную звезду» (LGS = Laser Guide Star) – маленькое яркое пятно, постоянно присутствующее в поле зрения телескопа. Как правило, для этого используется лазер непрерывного действия с выходной мощностью в несколько ватт, настроенный на частоту резонансной линии натрия (например, на линию D 2 Na). Его луч фокусируется в атмосфере на высоте около 90 км, там, где присутствует естественный слой воздуха, обогащенный натрием, свечение которого как раз и возбуждается лазерным лучом. Физический размер светящейся области составляет около 1 м, что с расстояния в 100 км воспринимается как объект с угловым диаметром около 1І .

Например, в системе ALFA (Adaptive optics with Laser For Astronomy), разработанной в Институте внеземной физики и Институте астрономии Общества им. Макса Планка (Германия) и пущенной в опытную эксплуатацию в 1998, аргоновый лазер накачки мощностью 25 Вт возбуждает лазер на красителях выходной мощность 4,25 Вт, который и дает излучение в линии D 2 натрия. Это устройство создает искусственную звезду с визуальным блеском 9–10. Правда, появление в атмосфере аэрозоля или наблюдение на больших зенитных расстояниях существенно снижают блеск и качество искусственной звезды.

Поскольку луч мощного лазера способен ночью ослепить пилота самолета, астрономы предпринимают меры безопасности. Видеокамера с полем зрения 20 0 следит через тот же телескоп за областью неба вокруг искусственной звезды и при появлении любого объекта выдает команду на заслонку, перекрывающую лазерный луч.

Создание в конце 20 в. систем адаптивной оптики открыло новые перспективы перед наземной астрономией: угловое разрешение крупных наземных телескопов в видимом диапазоне вплотную приблизилось к возможностям Космического телескопа «Хаббл», а в близком инфракрасном диапазоне даже заметно превысило их. Адаптивная оптика позволит в самое ближайшее время ввести в строй крупные оптические интерферометры, способные, в частности, исследовать планеты у других звезд.

Владимир Сурдин

АДАПТИВНАЯ ОПТИКА

АДАПТИВНАЯ ОПТИКА

Раздел оптики, занимающийся разработкой оптич. систем с динамич. управлением формой волнового фронта для компенсации случайных возмущений и повышения т. о. предела разрешения наблюдат. приборов, степени концентрации излучения на приёмнике или мишени и т. п. А. о. начала интенсивно развиваться в 1950-е гг. в связи с задачей компенсации искажений фронта, вызванных атм. турбулентностью и накладывающих осн. ограничение на разрешающую способность наземных телескопов. Позднее к этому добавились проблемы создания орбитальных телескопов и мощных лазерных излучателей, подверженных др. видам помех. Адаптивные оптич. системы классифицируются по порядку волновых аберраций (см. Аберрации оптических систем), к-рые они способны компенсировать (т. е. по степени полинома, в виде к-рого представляется фазовой поправки по сечению пучка).

Простейшие системы - 1-го и 2-го порядков - изменяют общий наклон волнового фронта и его кривизну простым перемещением отд. оптич. элементов фиксированной формы. Для систем более высокого порядка в качестве корректирующих элементов вначале чаще всего использовались зеркала, разбитые на соответствующее число самостоятельно перемещаемых сегментов. Постепенно они вытесняются гибкими ("мембранными") зеркалами, формой поверхности к-рых управляют либо созданием изгибающих моментов внутри самого зеркала, либо действием сил со стороны несущей конструкции. Часто используются небольшие деформируемые зеркала с пьезоэлектрич. приводами, устанавливаемые на участках оптич. системы с умеренными размерами сечения светового пучка (неподалёку от фокальной плоскости объектива телескопа и т, п.).

Информацию о необходимом воздействии на получают методом пробных возмущений либо непосредств. измерением формы фронта. Оба эти способа применяются при создании как приёмных, так и излучающих систем.

Метод пробных возмущений (или апертурного зондирования). Заключается в измерении реакции на небольшие, преднамеренно вносимые . Контролируемым параметром при этом обычно является в сфокусированном пятне либо интенсивность света, рассеянного мишенью. Эффекты, за к-рые ответственны разные виды фазовых искажений, разделяют либо по частоте (т. н. многовибраторный метод), либо по времени (т. н. многоступенчатый или последоват. метод). В первом случае возбуждаются малые гармонич. разл. участков зеркала (либо колебат. зеркала в целом) с разл. частотами; результирующего сигнала позволяет установить величину и направление необходимых для оптимизации системы изменений формы фронта. Во втором случае колебаний отд. участков или мод зеркала осуществляется последовательно во времени.

Для пробных возбуждений и итоговой корректировки фазового распределения обычно используются разные зеркала - одно обеспечивает малые изменения фазы с высокими временными частотами, второе имеет значительно больший диапазон изменения формы и может быть более инерционным. Связанное с этим усложнение осн. оптич. тракта в определ. степени компенсируется применением лишь одного некогеревт-ного приёмника излучения.

Прямое формы волнового фронта. Для него разработаны самые разнообразные и порой весьма оригинальные способы (гл. обр. интерферометриче-ские), обычно применяемые в сочетании с методом компенсации волнового фронта (для приёмных систем) и методом фазового сопряжения (для излучателей). Метод компенсации заключается в восстановлении у волнового фронта излучения, пришедшего от находящегося в точечного объекта, идеальной сферич. формы (утраченной им вследствие влияния турбулентности атмосферы и аберраций объектива телескопа).

Схема метода фазового сопряжения. Толстая линия - волновой фронт исходной ; тонкая - волновой фронт опорного излучения; стрелками показано направление распространения волновых фронтов.

В методе фазового сопряжения волновому фронту излучения, испускаемого мощным источником, придаётся форма, сопряжённая по фазе с фронтом опорного излучения, рассеянного мишенью и пришедшегок источнику (рис.; для предварит. освещения мишени с целью получения опорного излучения может использоваться как основной, так и вспомогат. источник). Т. о., на излучаемую волну заранее накладываются такие искажения, что последующие искажения на пути её распространения оказываются скомпенсированными; этим достигается макс. излучения за мишени.

Нередко к А. о. относят также область лазерной техники, связанную с применением фазово-сопряжённых волн для автокомпенсации искажений волнового фронта в мощных лазерных усилителях. В нек-рых случаях удаётся непосредств. преобразование опорной волны в сопряжённую с помощью методов нелинейной оптики и голографии (см. Обращение волнового фронта ).

Лит.. Харди Дж. У., Активная новая техника управления световым пучком, [пер. с англ.], "ТИИЭР", 1978, г. 66, № 6, с. 31; Adaptive optics, "J. Opt. Soc. Amer.", 1977, v. 67,№ 3. Ю. А. Ананьев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "АДАПТИВНАЯ ОПТИКА" в других словарях:

    Адаптивная оптика раздел физической оптики, изучающий методы устранения нерегулярных искажений, возникающих при распространении света в неоднородной среде, с помощью управляемых оптических элементов. Основные задачи адаптивной оптики … … Википедия

    Оптическая система с автоматической коррекцией волнового фронта. Ещё в 1953 году американский астроном Гораций Бэбкок предложил использовать для борьбы с вредным влиянием атмосферной турбулентности тот же способ, что применяются и в активной… … Астрономический словарь

    Раздел оптики, в к ром разрабатываются оптич. системы с динамич. управлением формой волнового фронта для компенсации случайных возмущений и искажений, приобретаемых волной при прохождении через неоднородную среду (атмосферу, оптич. систему) … Естествознание. Энциклопедический словарь

    - (греч. optike наука о зрительных восприятиях, от optos видимый, зримый), раздел физики, в к ром изучаются оптическое излучение (свет), процессы его распространения и явления, наблюдаемые при вз ствии света и в ва. Оптич. излучение представляет… … Физическая энциклопедия

    Таблица «Оптика» из энциклопедии 1728 г. О … Википедия

    - (от др. греч. ἀστήρ «звезда, светило» и φυσικά «природа») наука на стыке астрономии и физики, изучающая физические процессы в астрономических объектах, таких, как звёзды, галактики и т. д. Физические свойства материи на… … Википедия

    Оптическое оптич. деталь (выполненная из стекла, металла, ситалла или пластмассы), одна из поверхностей к рой обладает правильной формой, покрыта отражающим слоем и имеет шероховатость, не большую сотых долей длины волны света. В зависимости от… … Физическая энциклопедия

    У термина «аберрация» есть и другие значения, см. аберрация. Аберрации оптических систем ошибки, или погрешности изображения в оптической системе, вызываемые отклонением луча от того направления, по которому он должен был бы идти в… … Википедия

    Для термина «Аберрация» см. другие значения. Аберрация оптической системы ошибка или погрешность изображения в оптической системе, вызываемая отклонением луча от того направления, по которому он должен был бы идти в идеальной оптической… … Википедия

    У этого термина существуют и другие значения, см. Рефлектор. БТА, САО, Россия Рефлектор оптический телескоп, использующий в качестве светособирающих элементов зеркала. Впервые рефлектор был построен Исааком Ньютоном около 1670. Это… … Википедия

Книги

  • Адаптивные оптические системы коррекции наклонов. Резонансная адаптивная оптика , О. И. Шанин , В книге изложены физические, расчетно-теоретические и технические вопросы проектирования наиболее простых, на первый взгляд, адаптивных оптических систем - системкоррекции наклонов.… Категория: Радиоэлектроника Издатель: Техносфера , Производитель:

: «Давно интересует как работает лазерная система стабилизации изображений у телескопов. На фотографиях телескопы с такой системой очень красиво выглядят.»

Попробуем сейчас разобраться.

Атмосфера, необходимая для людей и других форм жизни на Земле, практически повсеместно проклинается астрономами. Она прекрасно подходит для дыхания, но когда дело доходит до астрономических наблюдений тусклых объектов, атмосфера постоянно стремится испортить изображение.

Эта проблема была известна еще Исааку Ньютону, в 1704 он понял, что турбулентность атмосферы влияет на формирование изображения. Точно так же, как тепловые волны, парящие над нагретым участком земли, могут испортить нам его вид, изображение удаленного объекта, сформированное телескопом, искажается благодаря температурным изменениям в отделяющем нас атмосферном слое. Поэтому свет, входящий в телескоп, доходит до него по разным траекториям и попадает в разные точки входной апертуры. Размер изображения и его качество зависят от статистической характеристики пространственной частоты турбулентности, называемой длиной когерентности, или r0, обычно равной 10 см в хорошем месте. Следовательно, даже для хорошего места разрешающая способность большого телескопа (диаметром 4 или 8 метров) сравнима с той, что дает 10-см телескоп; изображение не будет резче того, что позволяет атмосфера.

Атмосферная турбулентность действует так, как если бы одна большая апертура телескопа была заменена множеством апертур малых телескопов размера r0 и каждый телескоп испытывал бы тряску независимо от других и так, что отдельные точки изображения почти никогда не совпадали бы. Степень этой тряски задается другим статистическим параметром – временем когерентности, имеющим обычно порядок 1 мс.

Изображение в результате становится нечетким благодаря дрожанию, похожему на дрожание руки, но с частотой, достигающей тысячи герц!

А что же делать?

Одно из решений этой проблемы, предложенное Ньютоном, устанавливать телескопы как можно выше. Это решение объясняет, почему современные астрономические телескопы устанавливаются на вершинах гор, помещаются на воздушных шарах и самолетах или, как например космический телескоп Хаббл, размещаются на околоземной орбите. Так как космический телескоп располагается за предела-
ми земной атмосферы, он реализует полную разрешающую способность своей 2,4-м апертуры и дает возможность получать революционные результаты в астрофизике. Однако такой телескоп пока один, он позволяет проводить только ограниченное количество наблюдений. Если можно было бы реализовать разрешающую способность таких больших апертур, это было бы главным успехом в астрономии. К счастью, существует технология, которая позволяет это сделать.

В 1953 году Хорас Бэбкок (Horace Babcock) предложил инструмент, который мог бы измерять атмосферные искажения в реальном времени и корректировать их, используя быстро перестраиваемые формоизменяющиеся оптические компоненты. Доступные в то время технологии не позволяли решить эту задачу, однако основная предложенная концепция, поддержанная современными технологиями, эволюционировала со временем в то, что сейчас и представляет предмет адаптивной оптики.

Адаптивная оптика — автоматическая оптико-механическая система, предназначенная для исправления в реальном времени атмосферных искажений изображения, которое дает телескоп. Системы адаптивной оптики применяются в оптических и инфракрасных телескопах наземного базирования для повышения четкости изображения. Они необходимы также для работы астрономических интерферометров, используемых для измерения размеров звезд и поиска их близких спутников, особенно планет. Системы адаптивной оптики имеют и неастрономические приложения: например, когда требуется наблюдать форму искусственных спутников Земли с целью их опознания. Разработка систем адаптивной оптики началась в 1970-е годы и приобрела особый размах в 1980-е в связи с программой «звездных войн», включавшей разработку лазерного противоспутникового оружия наземного базирования. Первые штатные системы активной оптики начали работать на крупных астрономических телескопах около 2000 года.

Идущие от космических источников лучи света, проходя сквозь неоднородную атмосферу Земли, испытывают сильные искажения. Например, волновой фронт света, приходящего от далекой звезды (которую можно считать бесконечно удаленной точкой), на внешней границе атмосферы имеет идеально плоскую форму. Но пройдя сквозь турбулентную воздушную оболочку и достигнув поверхности Земли, плоский волновой фронт теряет свою форму и становится похож на волнующуюся морскую поверхность. Это приводит к тому, что изображение звезды превращается из «точки» в непрерывно дрожащую и бурлящую кляксу. При наблюдении невооруженным глазом мы воспринимаем это как быстрое мигание и дрожание звезд. При наблюдении в телескоп вместо «точечной» звезды мы видим дрожащее и переливающееся пятно; изображения близких друг к другу звезд сливаются и становятся неразличимы по отдельности; протяженные объекты — Луна и Солнце, планеты, туманности и галактики — теряют резкость, у них пропадают мелкие детали.

Обычно на фотографиях, полученных телескопами, угловой размер мельчайших деталей составляет 2-3І; на лучших обсерваториях он изредка составляет 0,5І. Следует иметь в виду, что при отсутствии атмосферных искажений телескоп с объективом диаметром в 1 м дает угловое разрешение около 0,1І, а с объективом в 5 м дает разрешение в 0,02І. Фактически такое высокое качество изображения у обычных наземных телескопов никогда не реализуется из-за влияния атмосферы.

Пассивный метод борьбы с атмосферными искажениями заключается в том, что обсерватории строят на вершинах гор, обычно на высоте 2-3 км, выбирая при этом места с наиболее прозрачной и спокойной атмосферой (см. АСТРОКЛИМАТ). Но строить обсерватории и работать на высоте более 4,5 км практически невозможно. Поэтому даже на самых лучших высокогорных обсерваториях большая часть атмосферы располагается все же выше телескопа и существенно портит изображения.

Роль астронома-наблюдателя. Вообще говоря, задачу «получить изображение лучше, чем дает атмосфера», в астрономии решают разными средствами. Исторически, в эпоху визуальных наблюдений в телескоп, астрономы научились внимательно ловить моменты хорошего изображения. В силу случайного характера атмосферных искажений в некоторые мгновения они становятся незначительными, и в изображении проявляются мелкие детали. Наиболее опытные и настойчивые наблюдатели часами караулили эти моменты и смогли таким образом зарисовать очень тонкие детали поверхности Луны и планет, а также обнаружить и измерить очень тесные двойные звезды. Но крайняя необъективность этого метода ярко проявилась в истории с марсианскими каналами: одни наблюдатели их видели, другие — нет.

Применение в астрономии фотопластинок позволило выявить множество новых объектов, недоступных глазу из-за их низкой яркости. Однако фотоэмульсия при слабой освещенности имеет очень малую чувствительность к свету, поэтому в начале 20 в. при астрономическом фотографировании требовались многочасовые экспозиции. За это время атмосферное дрожание заметно снижает качество изображения по сравнению визуальным.

Некоторые астрономы пытались бороться с этим явлением, самостоятельно исполняя роль активной и отчасти адаптивной оптических систем. Так, американские астрономы Дж.Э. Килер (Keeler J.E., 1857-1900) и В. Бааде (Baade W., 1893-1960) регулировали во время экспозиции фокус телескопа, наблюдая с очень большим увеличением (около 3000 раз) форму комы звезды на краю поля зрения. А известный конструктор телескопов Дж.У. Ричи (Ritchey G.W., 1864-1945) разработал особую фотокассету на подвижной платформе — так называемую «кассету Ричи»; с ее помощью можно быстро выводить фотопластинку из фокуса телескопа, заменяя ее фокусировочным прибором (нож Фуко), а затем возвращать кассету точно в прежнее положение. Во время экспозиции Ричи несколько раз отодвигал кассету, когда чувствовал, что нужно поправить фокус. К тому же, наблюдая за качеством изображения и его положением в окуляр, размещенный рядом с кассетой, Ричи постоянно поправлял положение кассеты и научился быстро закрывать затвор, когда изображения становились плохими. Эта работа требовала от астронома очень высокого напряжения, но зато сам Ричи получил таким способом великолепные фотографии спиральных галактик, на которых впервые стали видны отдельные звезды; эти прекрасные снимки воспроизводились во всех учебниках 20 в. Однако широкого применения кассета Ричи не получила ввиду большой сложности работы с ней.

Развитие фото- и видеотехники позволило быстро фиксировать изображение объекта в режиме киносъемки с последующим отбором наиболее удачных изображений. Были разработаны и более тонкие методы апостериорного анализа изображений, например, методы спекл-интерферометрии, позволяющие выявлять в размытом атмосферой пятне расположение и яркость объектов с заранее известными свойствами, таких как «точечные» звезды. Математические методы восстановления изображений также позволяют повышать контраст и выявлять мелкие детали. Но указанные методы неприменимы в процессе наблюдения

Принципы адаптивной оптики.

Запуск на орбиту в 1990 оптического телескопа «Хаббл» диаметром 2,4 м и его чрезвычайно эффективная работа в последующие годы доказали большие возможности телескопов, не обремененных атмосферными искажениями. Но высокая стоимость создания и эксплуатации Космического телескопа заставили астрономов искать пути компенсации атмосферных помех у поверхности Земли. Появление быстродействующих компьютеров и, не в последнюю очередь, желание военных создать систему космического оружия с лазерами наземного базирования сделали актуальной работу по компенсации атмосферных искажений изображения в реальном времени. Система адаптивной оптики позволяет выравнивать и стабилизировать волновой фронт прошедшего сквозь атмосферу излучения, дает возможность не только получать в фокусе телескопа четкое изображение космического объекта, но и выводить с Земли в космос остро сфокусированный луч лазера. К счастью, военные устройства такого типа не были реализованы, но проделанная в этом направлении работа чрезвычайно помогла астрономам почти полностью реализовать теоретические параметры крупных телескопов по качеству изображения. К тому же разработка активной оптики сделала возможным строительство наземных оптических интерферометров на базе телескопов большого диаметра: поскольку после прохождения через атмосферу длина когерентности света составляет всего около 10 см, наземный интерферометр без системы адаптивной оптики работать не может.

Задача адаптивной оптики состоит в нейтрализации в реальном времени искажений, вносимых атмосферой в изображение космического объекта. Обычно адаптивная система работает совместно с системой активной оптики, поддерживающей конструкцию и оптические элементы телескопа в «идеальном» состоянии. Действуя совместно, системы активной и адаптивной оптики приближают качество изображения к предельно высокому, определяемому принципиальными физическими эффектами (в основном — аберрацией света на объективе телескопа). В принципе системы активной и адаптивной оптики подобны друг другу. Обе они содержат три основных элемента: 1) анализатор изображения, 2) компьютер с программой, вырабатывающей сигналы коррекции и 3) исполняющие механизмы, изменяющие оптическую систему телескопа так, чтобы изображение стало «идеальным». Количественное различие между этими системами состоит в том, что коррекцию недостатков самого телескопа (активная оптика) можно проводить сравнительно редко — с интервалом от нескольких секунд до 1 минуты; но исправлять помехи, вносимые атмосферой (адаптивная оптика), необходимо значительно чаще — от нескольких десятков до тысячи раз в секунду. Поэтому система адаптивной оптики не может изменять форму массивного главного зеркала телескопа и вынуждена управлять формой специального дополнительного «легкого и мягкого» зеркала, установленного у выходного зрачка телескопа.

Реализаци я адаптивной оптики

Впервые на возможность коррекции атмосферных искажений изображения при помощи деформируемого зеркала указал в 1953 американский астроном Хорас Бэбкок (Babcock H.W., р. 1912). Для компенсации искажений он предложил использовать отражение света от масляной пленки, поверхность которой деформирована электростатическими силами. Тонкопленочные зеркала с электростатическим управлением разрабатываются для аналогичных целей и в наши дни, хотя более популярным исполнительным механизмом служат пьезоэлементы с зеркальной поверхностью.

Плоский фронт световой волны, пройдя сквозь атмосферу, искажается и вблизи телескопа имеет довольно сложную структуру. Для характеристики искажения обычно используют параметр r0 — радиус когерентности волнового фронта, определяемый как расстояние, на котором среднеквадратическая разность фаз достигает 0,4 длины волны. В видимом диапазоне, на волне длиной 500 нм, в подавляющем большинстве случаев r0 лежит в интервале от 2 до 20 см; условия, когда r0 = 10 см, нередко считаются типичными. Угловое разрешение крупного наземного телескопа, работающего через турбулентную атмосферу с длинной экспозицией, равно разрешению идеального телескопа диаметром r0, работающего вне атмосферы. Поскольку значение r0 возрастает приблизительно пропорционально длине волны излучения (r0 µ l6/5), атмосферные искажения в инфракрасном диапазоне существенно меньше, чем в видимом.

Для небольших наземных телескопов, диаметр которых сравним с r0, можно считать, что в пределах объектива волновой фронт плоский и в каждый момент времени наклонен случайным образом на некоторый угол. Наклон фронта соответствует смещению изображения в фокальной плоскости или, как говорят астрономы, дрожанию (в физике атмосферы принят термин «флуктуации угла прихода»). Для компенсации дрожания в таких телескопах достаточно ввести плоское управляемое зеркало, наклоняющееся по двум взаимно перпендикулярным осям. Опыт показывает, что такое простейшее исполнительное устройство в системе адаптивной оптики малого телескопа весьма существенно повышает качество изображения при длительных экспозициях.

У телескопов большого диаметра (D) на площади объектива укладывается порядка (D/r0)2 квазиплоских элементов волнового фронта. Этим числом и определяется сложность конструкции компенсирующего зеркала, т.е. количество пьезоэлементов, которые, сжимаясь и расширяясь под действием управляющих сигналов с высокой частотой (до сотен герц), изменяют форму «мягкого» зеркала. Нетрудно оценить, что на крупном телескопе (D = 8-10 м) полное исправление формы волнового фронта в оптическом диапазоне потребует корректирующего зеркала с (10 м / 10 см)2 = 10 000 управляемыми элементами. При нынешнем развитии систем адаптивной оптики это практически невыполнимо. Однако в близком инфракрасном диапазоне, где значение r0 = 1 м, корректирующее зеркало должно содержать около 100 элементов, что вполне достижимо. Например, система адаптивной оптики интерферометра Очень большого телескопа (VLT) Европейской южной обсерватории в Чили имеет корректирующее зеркало из 60-ти управляемых элементов.

Изображения звезд, полученные на 10-м телескопе Кека с включенным и выключенным исправлением турбулентности.

Для выработки сигналов, управляющих формой корректирующего зеркала, обычно анализируется мгновенное изображение яркой одиночной звезды. В качестве приемника используется анализатор волнового фронта, размещенный у выходного зрачка телескопа. Через матрицу из множества небольших линз свет звезды попадает на ПЗС-матрицу, сигналы которой оцифровываются и анализируются компьютером. Управляющая программа, изменяя форму корректирующего зеркала, добивается того, чтобы изображение звезды имело идеально «точечный» вид.

Эксперименты с системами адаптивной оптики начались в конце 1980-х, а к середине 1990-х уже были получены весьма обнадеживающие результаты. С 2000 практически на всех крупных телескопах используются такие системы, позволяющие довести угловую разрешающую способность телескопа до его физического (дифракционного) предела. В конце ноября 2001 система адаптивной оптики начала работать на 8,2-метровом телескопе Йепун (Yepun), входящем в состав Очень большого телескопа (VLT) Европейской южной обсерватории в Чили. Это существенно улучшило качество наблюдаемой картины: теперь угловой диаметр изображений звезд составляет 0,07І в диапазоне K (2,2 мкм) и 0,04І в диапазоне J (1,2 мкм).

Искусственная звезда. Для быстрого анализа изображения в системе адаптивной оптики используется опорная звезда, которая должна быть весьма яркой, поскольку ее свет делится анализатором волнового фронта на сотни каналов и в каждом из них регистрируется с частотой около 1 кГц. К тому же яркая опорная звезда должна располагаться на небе вблизи изучаемого объекта. Однако в поле зрения телескопа далеко не всегда встречаются подходящие звезды: ярких звезд на небе не так много, поэтому до недавних пор системам адаптивной оптики были доступны наблюдения лишь 1% небосвода. Чтобы снять это ограничение, было предложено использовать «искусственный маячок», который располагался бы вблизи изучаемого объекта и помогал зондировать атмосферу. Эксперименты показали, что для работы активной оптики очень удобно при помощи специального лазера создавать в верхних слоях атмосферы «искусственную звезду» (LGS = Laser Guide Star) — маленькое яркое пятно, постоянно присутствующее в поле зрения телескопа. Как правило, для этого используется лазер непрерывного действия с выходной мощностью в несколько ватт, настроенный на частоту резонансной линии натрия (например, на линию D2 Na). Его луч фокусируется в атмосфере на высоте около 90 км, там, где присутствует естественный слой воздуха, обогащенный натрием, свечение которого как раз и возбуждается лазерным лучом. Физический размер светящейся области составляет около 1 м, что с расстояния в 100 км воспринимается как объект с угловым диаметром около 1І.

Например, в системе ALFA (Adaptive optics with Laser For Astronomy), разработанной в Институте внеземной физики и Институте астрономии Общества им. Макса Планка (Германия) и пущенной в опытную эксплуатацию в 1998, аргоновый лазер накачки мощностью 25 Вт возбуждает лазер на красителях выходной мощность 4,25 Вт, который и дает излучение в линии D2 натрия. Это устройство создает искусственную звезду с визуальным блеском 9-10. Правда, появление в атмосфере аэрозоля или наблюдение на больших зенитных расстояниях существенно снижают блеск и качество искусственной звезды.

Поскольку луч мощного лазера способен ночью ослепить пилота самолета, астрономы предпринимают меры безопасности. Видеокамера с полем зрения 200 следит через тот же телескоп за областью неба вокруг искусственной звезды и при появлении любого объекта выдает команду на заслонку, перекрывающую лазерный луч.

Создание в конце 20 в. систем адаптивной оптики открыло новые перспективы перед наземной астрономией: угловое разрешение крупных наземных телескопов в видимом диапазоне вплотную приблизилось к возможностям Космического телескопа «Хаббл», а в близком инфракрасном диапазоне даже заметно превысило их. Адаптивная оптика позволит в самое ближайшее время ввести в строй крупные оптические интерферометры, способные, в частности, исследовать планеты у других звезд.

На горе Хопкинс в Аризоне пучок из пяти лазерных лучей направлен в небо для улучшения изображения 6.5-метрового мультизеркального телескопа (MMT).

Группа астрономов Аризонского университета под руководством Майкла Харта разработала методику, которая позволяет калибровать поверхность телескопа с очень высокой точностью, что приводит к получению очень четких изображений объектов, которые обычно получались весьма размытыми.

Лазерная адаптивная оптика – относительно новая методика улучшения изображения на наземных телескопах. Прекрасно иметь возможность использовать космические телескопы такие как «Хаббл» или в недалеком будущем «Джеймс Уэбб», но их запуск и эксплуатация, безусловно, обходятся очень дорого. И главное, существует огромное количество астрономов претендующих на очень ограниченное время работы на этих телескопах. В таких телескопах, как Очень большой телескоп (ESO VLT) в Чили, или телескоп Кек на Гавайях уже используется лазерная адаптивная оптика для улучшения качества изображения.

Изначально адаптивная оптика фокусировалась на самой яркой звезде вблизи от области наблюдения телескопа, а приводы в задней части зеркала очень быстро перемещались компьютером для компенсации атмосферных искажений. Однако, возможности такой системы ограничены наличием областями неба вблизи ярких звезд.

Лазерная адаптивная оптика гораздо гибче в использовании – технология использует один лазер для возбуждения молекул атмосферы для появления свечения, которое используется в качестве «путеводной звезды» для калибровки зеркала, чтобы компенсировать искажения, вызванные турбулентностью атмосферы. Компьютер анализирует свет от искусственной «путеводной звезды» и определяет поведение атмосферы, изменяя форму поверхности зеркала для компенсации искажений.

При использовании единственного лазера, адаптивная оптика может компенсировать турбулентность только на весьма ограниченном поле зрения. Новая технология, которая впервые была применена на 6.5-мметровом мультизеркальном телескопе ММТ в Аризоне, включает не один, а пять лазеров, чтобы создать пять отдельных «путеводных звезд» на широком поле зрения в две угловые минуты. Угловое разрешение телескопа меньше, чем у системы с одним лазером, для примера, телескоп Кек или ESO VLT могут делать снимки с угловым разрешением 30-60 угловых миллисекунд, но возможность иметь более четкое изображение на большом поле зрения имеет массу преимуществ.

Возможность проводить спектральные исследования старых тусклых галактик – одна из возможных сфер применения этой технологии. С помощью спектрального анализа ученые способны гораздо лучше понять строение и структуру космических объектов. При использовании этой технологии, изучение спектра галактик возрастом десять миллиардов лет, а у них очень большое красное смещение, возможно даже с поверхности Земли.

Также при использовании лазерной технологи гораздо проще структурировать сверхмассивные скопления звезд, поскольку разнесенные по времени снимки с телескопа позволят астрономам понять, какие звезды являются частью скопления, а какие гравитационно независимы.

А про космос я вам еще сейчас что нибудь напомню: вспомните и как работает . А теперь прогуляйтесь по Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

АДАПТИВНАЯ ОПТИКА, раздел оптики, занимающийся разработкой методов и средств управления формой волнового фронта (ВФ) с целью устранения искажений (аберраций), возникающих при распространении светового пучка в оптически неоднородной среде (например, турбулентной атмосфере) или из-за несовершенства элементов оптической системы.

Цель адаптивной коррекции - повышение разрешающей способности оптических приборов, повышение концентрации излучения на приёмнике, достижение максимально острой фокусировки светового пучка на мишени или получение заданного распределения интенсивности излучения. Возможности применения активных методов в оптике стали обсуждаться с начала 1950-х годов в связи с проблемой повышения разрешающей способности наземных телескопов, однако интенсивное развитие адаптивной оптики началось после создания достаточно эффективных корректоров (управляемых зеркал) и измерителей (датчиков) ВФ. Простейшая адаптивная система содержит одно плоское зеркало, наклон которого можно изменять, что позволяет устранить «дрожание» изображения при наблюдении сквозь турбулентную атмосферу. В более сложных системах используются корректоры с большим числом степеней свободы, позволяющие компенсировать аберрации высших порядков. Типичная схема организации управления в адаптивной системе (рисунок) построена по принципу обратной связи. Часть светового потока после корректора ответвляется и поступает на датчик ВФ, где измеряются остаточные аберрации. Эта информация используется для формирования сигналов в блоке управления, воздействующих на корректор и уменьшающих остаточные аберрации. Они становятся минимальными, качество изображения улучшается.

Существуют системы, не требующие использования датчиков ВФ. В этом случае минимизация искажений проводится путём преднамеренного внесения в ВФ пробных возмущений (метод апертурного зондирования). Затем влияние пробных возмущений на качество работы системы анализируется в блоке управления, после чего формируются управляющие сигналы, оптимизирующие ВФ. Системы апертурного зондирования требуют больших затрат времени на настройку корректора, так как для заметного уменьшения искажений процесс повторяется несколько раз.

Эффективность адаптивной оптической системы в значительной мере определяется совершенством применяемого корректора. Вначале использовались главным образом составные (сегментированные) зеркала, состоящие из нескольких сегментов, которые могли смещаться относительно друг друга с помощью пьезоприводов или иным способом. Впоследствии получили распространение гибкие («мембранные») зеркала с непрерывно деформируемой поверхностью. К началу 21 века техника коррекции ВФ значительно усовершенствовалась. Кроме управляемых зеркал различных типов применяют жидкокристаллические фазовые модуляторы, которые могут работать как на отражение (подобно зеркалам), так и на просвет. Ряд конструкций допускает их миниатюризацию и создание устройств, интегрированных в единый блок с управляющей электроникой, что позволяет создавать компактные и сравнительно недорогие адаптивные системы. Однако, несмотря на разработку фазовых корректоров нового поколения, традиционные гибкие зеркала сохраняют своё значение благодаря малым потерям светового потока и сравнительно простой конструкции. В лазерных системах применяют также нелинейно-оптические методы коррекции искажений, основанные на явлении обращения волнового фронта. Этот подход называют иногда нелинейной адаптивной оптикой.

Лит.: Воронцов М. А., Шмальгаузен В. И. Принципы адаптивной оптики. М., 1985; Тараненко В. Г., Шанин О. И. Адаптивная оптика. М., 1990; Лукин В. П., Фортес Б. В. Адаптивное формирование пучков и изображений в атмосфере. Новосиб., 1999.

В. И. Шмальгаузен.

Продолжительность:

Слушатели:

студенты 5-го курса кафедры ОФВиП, физического факультета МГУ им. М.В.Ломоносова (около 15 студентов)

Описание:

Курс представляет основные принципы адаптивной оптики, включая проблемы прохождения света через искажающую среду, фазовой коррекции, статистического анализа фазовых искажений. Рассматривается также проблема анизопланатизма в адаптивной оптике. Курс знакомит студентов с основами фазовых измерений и техникой фазовой коррекции в адаптивной оптике, а также некоторыми её приложениями.

Программа курса:

1. Задачи управления параметрами оптической системы.
Повышение углового разрешения астрономических телескопов и ограничения, вносимые атмосферной турбулентностью. Фазировка многозеркальных телескопов. Звездный интерферометр Майкельсона. Фокусировка лазерного пучка сквозь турбулентную атмосферу.Обращение волнового фронта и фазовое сопряжение. Проблема спеклов. Компенсация оптических внутрирезонаторных неоднородностей в лазерах и проблема формирования дифракционно-ограниченых пучков.

2. Аберрации оптических систем.
Линейные оптические системы и способы их описания. Преобразование комплексной амплитуды. Импульсная реакция и передаточная функция. Учет аберраций. Обобщенный принцип Гюйгенса-Френеля Передаточная функция оптической системы с аберрациями. Некогерентные системы. Оптическая передаточная функция (ОПФ) и частотно-контрастная характеристика изображающей системы. Число Штреля и нормированное разрешение системы, их зависимость от силы аберраций.

3. Разложение аберраций по ортогональным функциям.
Свойства ортонормированных систем функций. Полиномы Цернике [см. Полиномы Цернике]. Коэффициенты аберраций. Случайные аберрации и способы их описания. Корреляционная матрица аберрационных коэффициентов. Усредненные характеристики оптической системы. Средняя квадратичная фазовая ошибка. Приближенные выражения для разрешения системы и числа Штреля.

4. Атмосферные аберрации.
Флуктуации показателя преломления в турбулентной атмосфере. Структурная функция флуктуаций фазы. Радиус корреляции (Фридовский радиус). ОПФ и число Штреля в случае фазовых флуктуаций. Корреляция коэффициентов аберраций в атмосфере. Выражение корреляционных коэффициентов через структурную функцию фазы. Зависимость дисперсии коэффициентов от размера апертуры и радиуса корреляции.

5. Компенсация аберраций управляемыми фазовыми корректорами.
Типы корректоров и схемы их применения. Адаптивные оптические системы. Идеальный модальный корректор ВФ. Потенциальная эффективность модального корректора при компенсации атмосферных искажений. Выражение для остаточной квадратичной ошибки. Распределение остаточной ошибки по апертуре в зависимости от числа степеней свободы корректора.

6. Способы управления корректором в адаптивных системах.
Типичные схемы адаптивных систем. Системы фазового сопряжения и апертурного зондирования. Структура управления системами с датчиком ВФ. Источники погрешностей и их вклад в общую остаточную ошибку. Организация поиска максимума в системах апертурного зондирования. Выбор критерия качества. Проблема локальных экстремумов. Достоинства и недостатки систем апертурного зондирования.

7. Анизопланатизм адаптивных систем.
Угол изопланатизма идеальной адаптивной системы в турбулентной атмосфере. Влияние флуктуаций средней фазы и наклонов ВФ. Анизопланатизм при модальной коррекции. Длинноэкспозиционные и короткоэкспозиционные изображения. Способы расширения поля зрения адаптивной системы. Методы улучшения качества зарегистрированных изображений.

8. Амплитудные флуктуации в адаптивных системах.
Флуктуации интенсивности в атмосфере. Спеклы и особенности спекл-полей. Слабые флуктуации амплитуды и их описание. Структурная функция волны. Влияние амплитудных флуктуаций на ОПФ и число Штреля. Остаточная ошибка и точность фазовых измерений при наличии флуктуаций амплитуды.

9. Измерение искажений ВФ в адаптивной оптике 1.
Измерение локальных наклонов. Принципиальные ограничения: дробовой шум фотонов, шумы фотоприемника. Сдвиговые интерферометры: вращающиеся дифракционные решетки, двухканальная и совмещенная схемы; оценки чувствительности.

10. Измерение искажений ВФ в адаптивной оптике 2.
Интерферометр поперечного сдвига с голографическим фильтром; интерферометр радиального сдвига. Датчик Шарка-Гартмана. Позиционная характеристика; оценки точности и чувствительности. Датчик кривизны ВФ. Характеристики современных схем датчиков ВФ.

11. Восстановление ВФ по измеренным локальным наклонам.
Восстановление профиля ВФ метод наименьших квадратов. Вычисление коэффициентов аберраций; разложение по функциям отклика корректора. Восстановление ВФ с учетом статистики фазовых искажений (байесовский подход).

12. Методы высокоразрешающей фазовой коррекции.
Жидкокристаллические пространственные модуляторы фазы и адаптивные системы с оптической обратной связью. Основное уравнение системы; принципиальные ограничения. Методы визуализации фазовых искажений: дефокусировка и свободное распространение; преобразование Гильберта; интерферометр поперечного сдвига и голографический фильтр; интерферометр радиального сдвига.

13. Проблема опорного источника в астрономии.
Методы создания искусственных опорных источников: Рэлеевское рассеяние в атмосфере; использование натриевых слоев, возбуждаемых лазерным излучением. Проблема измерения средних наклонов. Анизопланатизм измерения ВФ с использованием искусственного опорного источника. Системы с многими опорными источниками.

14. Современные применения адаптивной оптики.
Коррекция фазовых искажений лазерных пучков в задачах ЛТС и системах формирования фемтосекундных лазерных импульсов; системы внутрирезонаторной коррекции термоаберраций в активных элементах технологических лазеров средней мощности. Формирование заданного распределения интенсивности в пучке технологического СО2 лазера. Использование адаптивной оптики в офтальмологии: измерение аберраций глаза человека; повышение разрешения изображений сетчатки в ретиноскопии; многоспектральная ретиноскопия.

Лекции:

· № 1. Вводная.
· № 2. Изображающие системы с линзой.
· № 3. Некогерентные системы.
· № 4. Измерение искажений ВФ в адаптивной оптике. Часть I .
· № 5. Измерение искажений ВФ в адаптивной оптике. Часть II .
· № 6. Измерение искажений ВФ в адаптивной оптике. Часть III .



  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то